

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

DFT Studies of the Structure and Vibrational Spectra of NH Tautomers of *trans*-N,N'-bis-Salicylidene-1',2'-cyclohexanediamines

Irena Majerz^a; T. Dziembowska^b

^a Institute of Chemistry, University of Wrocław, Wrocław, Poland ^b Institute of Chemistry and Environmental Protection, Technical University of Szczecin, Szczecin, Poland

To cite this Article Majerz, Irena and Dziembowska, T.(2009) 'DFT Studies of the Structure and Vibrational Spectra of NH Tautomers of *trans*-N,N'-bis-Salicylidene-1',2'-cyclohexanediamines', Spectroscopy Letters, 42: 5, 246 – 257

To link to this Article: DOI: 10.1080/00387010902896879

URL: <http://dx.doi.org/10.1080/00387010902896879>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

DFT Studies of the Structure and Vibrational Spectra of NH Tautomers of *trans*-*N,N'*-bis-Salicylidene-1',2'-cyclohexanediamines

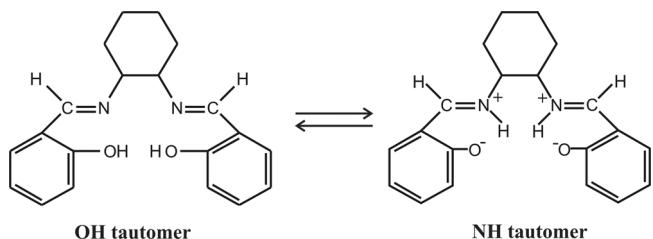
Irena Majerz¹,
and T. Dziembowska²

¹Institute of Chemistry,
University of Wrocław,
Wrocław, Poland

²Institute of Chemistry and
Environmental Protection,
Technical University of Szczecin,
Szczecin, Poland

ABSTRACT The structure and vibrational spectra of the tautomeric NH form of *trans*-*N,N'*-bis-(R-salicylidene)-cyclohexanediamines (R = H, 5-NO₂, 4,6-OCH₃, 3,5-Cl) and their analogues deuterated in the NH and CH imine groups were calculated using the DFT method at the 6-31G** level. The complicated nature of the normal modes was shown. The influence of the substituents on the hydrogen bond strength and nonequivalence of the two hydrogen bonds present in Schiff base molecules are discussed.

KEYWORDS Schiff bases, tautomerism, theoretical vibrational spectra


INTRODUCTION

Schiff base derivatives of aromatic 2-hydroxyaldehydes have received considerable attention due their physical and chemical properties that are interesting for their practical applications and the roles they play in biological systems.^[1–3] The property that has attracted noticeable interest is their aptitude for forming stable complexes with the transition metals.^[3] Several of these complexes exhibit catalytic properties. Particularly important appear to be complexes of Schiff base derivatives of chiral *trans*-1,2-diaminocyclohexane, which have been shown to be very effective as enantio-selective catalysts and which have found application in drug synthesis.^[4,5]

Schiff base derivatives of *trans*-1,2-diaminocyclohexane and their complexes were the object of our previous interest.^[6–11] As shown by NMR and UV-Vis experiments, some Schiff base derivatives of *trans*-diaminocyclohexane exist in solution as tautomeric mixtures of the OH and NH forms^[6] (Scheme 1). IR spectra of these compounds were also measured,^[6,7] however, the strong coupling of the vibrations and the complexity of the spectra made reliable assignments of the spectra impossible. The IR spectra were additionally complicated by the coexistence of the two tautomeric forms in solution. IR spectroscopy is known to be a very efficient tool for studying the complexes, particularly those with paramagnetic ions, where NMR methods have limited application.

Received 14 July 2008;
accepted 1 March 2009.

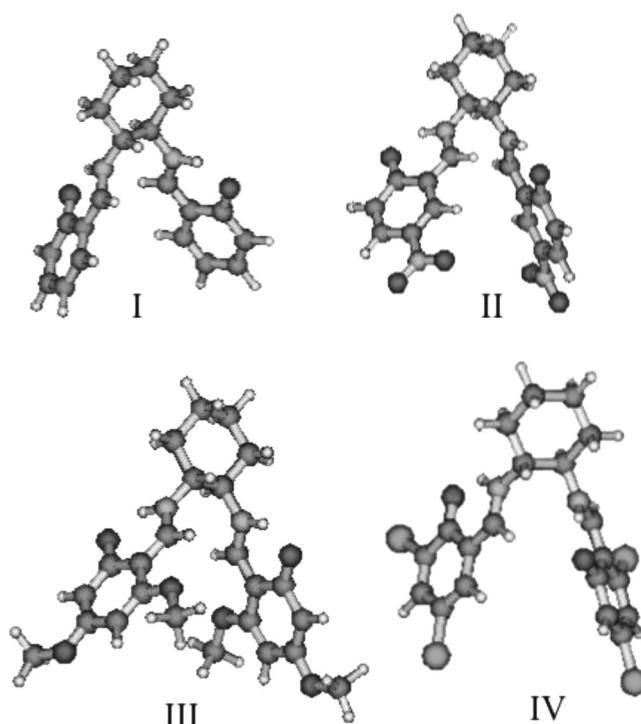
Address correspondence to
Irena Majerz, Institute of Chemistry,
University of Wrocław, Joliot-Curie
14, PL-50383, Wrocław, Poland.
E-mail: majerz@yahoo.com

SCHEME 1 Tautomeric equilibrium in *trans*-diaminocyclohexane Schiff base.

In this situation, a theoretical analysis of the IR spectra of the OH and NH tautomers appeared to be advisable as the only method of investigating pure OH and NH tautomers. In the previous paper, vibrational analysis was performed on a series of the OH tautomeric form of *trans*-*N,N'*-bis-(R-salicylidene)-cyclohexanediamine (R = H, 5-NO₂, 4,6-OCH₃, 3,5-Cl) based on a comparison of B3LYP-calculated IR spectra of these compounds and their analogues deuterated in the OH and CH imine groups.^[9] This method allowed the localization of the main bands attributed to the vibration of characteristic NH, C = N bonds and gave an explanation of the coupling of the vibrations in the chelate ring. In this study, we applied the same method for the vibrational analysis of the tautomeric NH form of *trans*-*N,N'*-bis-(R-salicylidene)-cyclohexanediamine (R = H, 5-NO₂, 4,6-OCH₃, 3,5-Cl) (Fig. 1). These theoretical studies are important because the Schiff bases under consideration do not exist as pure NH forms and consequently the experimental spectra have not been available.

Despite of numerous studies of the IR spectra of the NH tautomers of the Schiff bases, the assignment of several vibrations is contradictory. Substitution of the hydrogen atom in the CH and NH groups by deuterium may facilitate the assignment of the bands and deliver information on the nature of the vibrations in the molecules by removing the coupling of some vibrations and identifications of the modes in which the NH and CH vibration participate.

MATERIALS AND METHODS


The *trans*-*N,N'*-bis-(R-salicylidene)-cyclohexanediamines (R = H, 5-NO₂, 4,6-OCH₃, 3,5-Cl) were obtained previously and their IR spectra in CHCl₃ solution were measured.^[6] The optimization of the structures and calculations of the frequencies of the investigated compounds were performed using

the Gaussian 1998 program with DFT B3LYP methods at the 6-31G(d,p) level.^[12] The scale factor equal to 0.978 was used in scaling of the calculated harmonic wavenumbers in whole frequency range of the analyzed theoretical spectra. The simulated spectra were plotted using a Lorentzian band shape with a half-width of 5 cm⁻¹. Vibrational mode assignments were made by visual inspection of modes animated by using the gOpenMol program.

RESULTS

Geometric Parameters

The structures of the studied NH tautomers of *trans*-*N,N'*-bis-(R-salicylidene)-cyclohexanediamines (Fig. 1) were optimized using the B3LYP method at the 6-31G(d,p) level. The data for I were published previously.^[10] The selected geometric parameters of compounds I–IV are collected in Table 1. The N···O distances of 2.53–2.55 Å indicate the presence of a medium-strength hydrogen bond. The differences in bond length between the two salicylidene moieties were observed for all the compounds but III. Differences in the effect of substituents on the geometric parameters were observed.

FIGURE 1 The structures of the studied proton transfer tautomers of di-Schiff bases.

TABLE 1 Selected Calculated Geometric Parameters for the NH Form of *N,N'*-bis-(R-Salicylidene)-Cyclohexanediamines

Substituent R	Bond distances (Å)				
	N···O	O···H	NH	CO	OHN (°)
H	2.5502	1.6326	1.0538	1.270	142.4
(compound I) ^[10]	2.5373	1.6084	1.0580	1.274	143.4
5-NO ₂	2.5426	1.6170	1.0566	1.2682	143.1
(compound II)	2.5601	1.6496	1.0520	1.2631	141.8
4,6-diOMe	2.5615	1.6585	1.0479	1.2679	141.3
(compound III)	2.5615	1.6586	1.0479	1.2679	141.3
3,5-di-Cl	2.5619	1.6642	1.0470	1.2599	140.7
(compound IV)	2.5293	1.6100	1.0540	1.2702	142.5

Vibrational Spectra

The *trans-N,N'*-bis-(R-salicylidene)-1',2'-cyclohexanediamines (II–IV) exist in CHCl₃ solution in tautomeric equilibrium, whereas only the OH tautomer has been found for the derivative salicylic aldehyde (I).^[6] The experimental IR spectra of *N*-bis-(R-salicylidene)-1,2-cyclohexanediamines were measured previously [6]; however, due to their complexity, only a tentative assignment has been done. Following the method applied earlier for OH tautomers,^[9] we calculated the spectra of the NH tautomers of the Schiff bases under study and their CH- and NH-deuterated analogues. As previously, we focused our attention on the assignment and elucidation of the coupling of the vibrations of the C=N, NH, CO, and imine CH groups. These bands are important in the application of IR spectroscopy in the investigation of proton transfer and complex formation. For the simplest compound of the series, *trans-N,N'*-bis-salicylidene-1',2'-cyclohexanediamine (I), a detailed vibrational analysis was previously performed, and the assignment of all frequencies in the 3100–400 cm^{−1} region was given in Table 2 in Ref. 9. In this paper, we also performed the calculation for its CH- and NH-deuterated analogues. Comparison of the spectra of the *N*- bis-(R-salicylidene)-1,2-cyclohexanediamines with their NH- and CH-deuterated analogues are shown in Figs. 2–5.

Trans-N,N'-bis-(R-Salicylidene)-cyclohexanediamine (I)

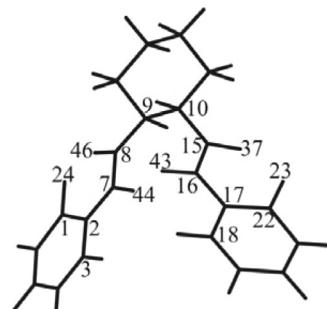
The ν NH frequencies occur at 2794 and 2730 cm^{−1} for the two moieties, indicating two hydrogen bonds of different strength. The ν NH frequency changes

TABLE 2 Calculated Frequencies (cm^{−1}) and Intensities (km/mol) for *trans-N,N'*-bis-(5-Nitrosalicylidene)-1',2'-Cyclohexanediamine

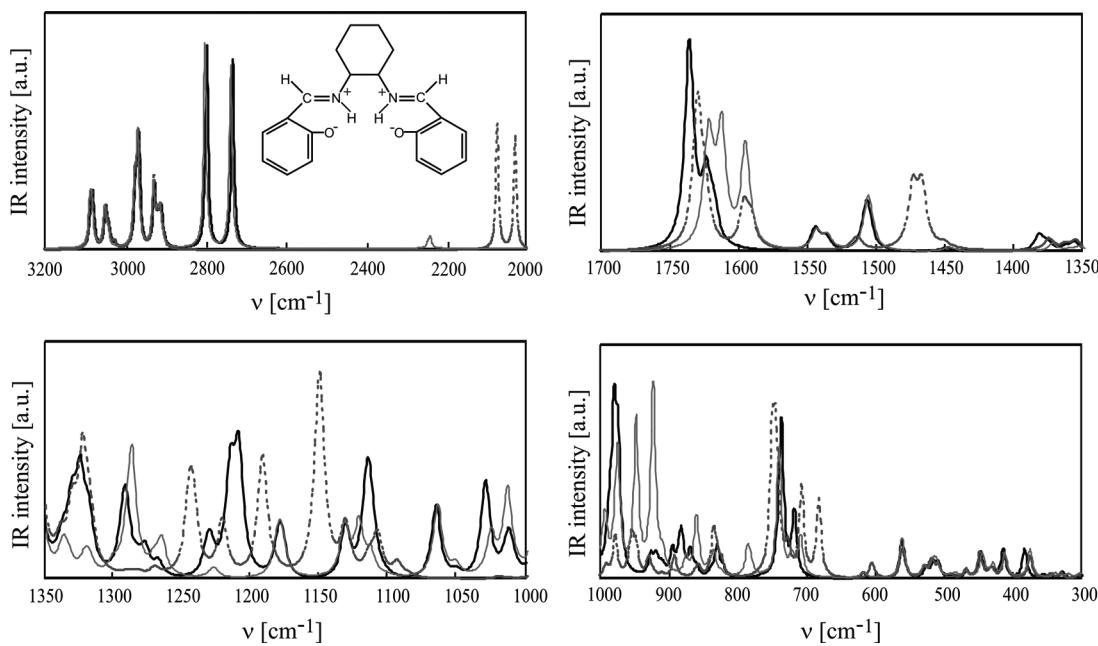
Mode	ν (cm ^{−1})	A (km/mol)	Assignment
26	354	1	τ C=N
27	358	3	τ C=N, γ CH _{im}
28	378	13	τ C=N, γ NH, γ CO
29	413	17	α C=NC
30	431	6	α C=NC
31	438	4	γ CH _{im} , γ CH _{ar} , γ NH
32	445	5	α CC=N, γ CH _{ar} , γ CH _{im}
33	448	7	γ CH _{ar} , γ CH _{im} , δ CH ₂
34	468	4	α C=NC, γ CO, γ CH _{ar} , γ NH
35	478	2	α C=NC, δ CH _{im} , δ CO, γ NO ₂
36	485	11	δ CH _{im} , δ CO, γ NO ₂
37	505	2	τ _{ar} ring
38	508	2	τ _{ar} ring
39	526	12	ν NC, δ _{al} ring
40	534	0	δ _{al} ring, δ _{ar} ring, δ CH _{im}
41	539	3	δ _{al} ring, δ _{ar} ring, δ CH _{im}
42	550	5	δ _{al} ring, γ NH
43	613	4	δ _{ar} ring, ν C=O
44	613	15	δ _{ar} ring, ν C=O
45	671	9	δ _{ar} ring, γ NH, α C=NC
46	673	12	δ _{ar} ring, γ NH, α C=NC
47	706	12	δ _{ar} ring, γ CH _{im}
48	707	11	δ _{ar} ring, γ CH _{im}
49	734	18	γ arCH, τ _{ar} ring, γ CH _{im}
50	734	4	γ CH _{ar} , τ _{ar} ring
51	745	25	δ _{ar} ring, δ CH _{im}
52	750	8	γ CH _{im} , δ _{ar} ring
53	769	0	δ _{al} ring
54	809	9	δ NO ₂ , δ NH, ν _{im} CC
55	810	14	δ NO ₂ , γ NH, ν CO
56	824	13	γ CH _{ar} , δ _{al} ring
57	824	16	γ CH _{ar} , δ _{al} ring
58	826	17	γ CH _{ar}
59	842	3	δ _{al} ring
60	878	15	δ _{al} ring, γ NH, γ CH _{im}
61	885	7	δ _{ar} ring, δ _{al} ring, γ CH _{ar}
62	887	22	γ CH _{im} , δ _{al} ring
63	907	2	δ CH ₂ , γ NH, γ CH _{im} , γ CH _{ar}
64	913	3	γ NH, γ CH _{im} , γ CH _{ar}
65	920	9	δ _{al} ring, γ CH _{ar} , δ CH _{im}
66	923	8	δ CH ₂ , γ NH, γ CH _{ar} , γ CH _{im}
67	925	11	CH ₂ , γ NH, γ CH _{ar} , γ CH _{im}
68	932	15	γ CH _{ar} , γ NH, γ _{im} CH, δ CH ₂
69	968	1	γ CH _{ar}
70	969	0	γ CH _{ar}
71	985	46	γ NH, γ CH _{ar}
72	990	101	γ NH, γ CH _{ar}
73	1013	1	δ CH ₂
74	1016	35	δ CH ₂ , γ NH, γ CH _{im}
75	1033	35	δ CH ₂ , γ NH, γ CH _{im}
76	1052	4	δ CH ₂ , γ NH

(Continued)

TABLE 2 Continued

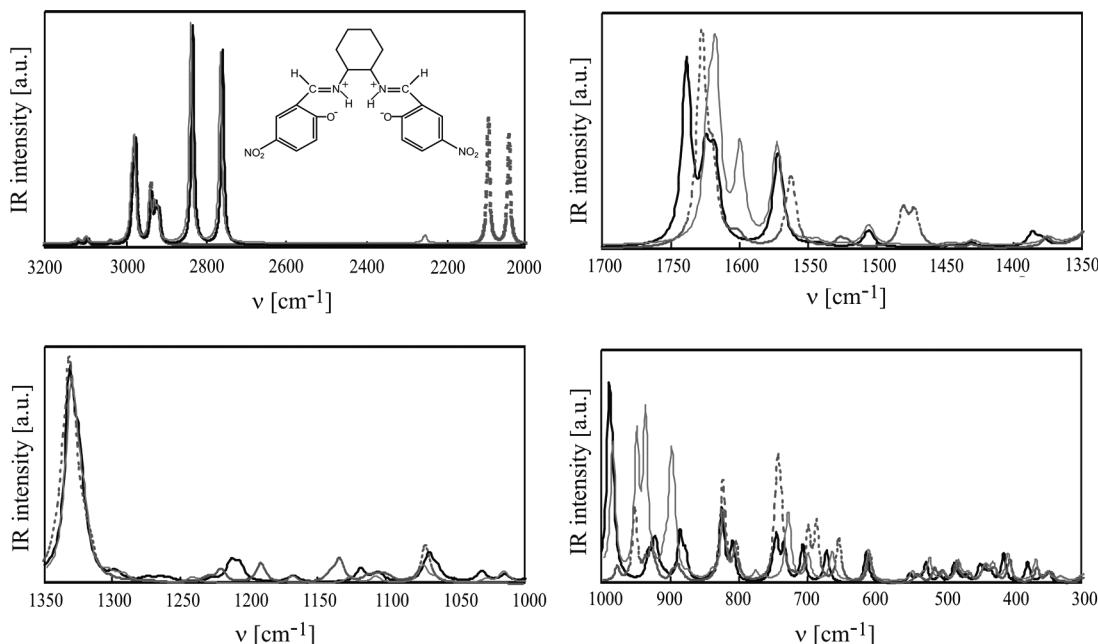

Mode	ν (cm ⁻¹)	A (km/mol)	Assignment
77	1065	53	γ NH, γ CH _{im} γ arCH
78	1071	110	δ CH _{ar} , γ NH
79	1073	35	δ CH _{ar}
80	1106	21	δ CH _{ar}
81	1108	15	δ CH _{ar}
82	1111	18	δ CH _{ar} , δ CH ₂
83	1121	67	δ CH _{ar} , δ NH, δ CH _{im}
84	1169	13	δ CH _{ar} , δ NH, δ CH _{im}
85	1171	22	δ CH _{ar} , δ NH
86	1184	0	δ CH ₂
87	1209	84	δ NH, δ CH ₂ , δ CH _{im} , δ CH _{ar}
88	1216	95	δ NH, δ CH ₂ , δ CH _{im} , δ CH _{ar}
89	1229	12	δ CH ₂ , δ CH _{ar}
90	1232	3	δ CH ₂
91	1261	15	δ CH _{ar} , δ NH, δ CH _{im} , δ CH ₂
92	1267	17	δ CH _{ar} , δ NH, δ CH _{im} , δ CH ₂
93	1276	20	δ CH _{ar} , δ NH, δ CH _{im} , δ CH ₂
94	1298	16	δ CH ₂ , δ NH
95	1301	26	δ CH ₂ , δ NH
96	1319	17	δ CH ₂ , δ NH, δ CH _{im}
97	1322	60	δ CH ₂ , δ NH, δ CH _{im}
98	1326	429	ν_s NO ₂ , δ NH, δ CH _{im} , δ CH ₂
99	1329	110	ν_s NO ₂ , δ NH, δ CH _{im} , δ CH ₂
100	1333	892	ν_s NO ₂ , δ NH, δ CH _{im} , δ CH ₂
101	1336	49	δ CH _{im} , δ CH _{ar}
102	1340	6	δ CH ₂
103	1342	6	ν CO, δ NH, δ CH _{im} , δ CH _{ar}
104	1344	18	ν CO, δ NH, δ CH _{im} , δ CH _{ar}
105	1350	21	δ CH ₂ , δ CH _{im}
106	1358	10	δ CH ₂ , δ CH _{im}
107	1381	42	δ CH _{im} , δ CH _{ar} , δ NH
108	1388	84	δ CH _{im} , δ CH _{ar} , δ NH
109	1431	13	δ CH _{ar} , δ CH _{im}
110	1433	18	δ CH _{ar} , δ CH _{im}
111	1442	1	δ CH ₂
112	1443	2	δ CH ₂
113	1447	11	δ CH ₂
114	1459	2	δ CH ₂
115	1506	55	ν CC _{ar} , δ NH, δ CH _{im}
116	1508	55	ν CC _{ar} , δ NH, δ CH _{im}
117	1544	17	δ NH, ν CC _{ar} , ν CO
118	1550	9	δ NH, ν CC _{ar} , ν CO
119	1572	180	ν_{as} NO ₂ , δ NH
120	1574	444	ν_{as} NO ₂ , δ NH
121	1619	395	ν CO, δ NH, δ CH _{im}
122	1622	155	ν CC _{ar} , δ NH, ν C=N, ν CO
123	1627	478	ν C=N, δ CH _{im} , δ NH
124	1640	1155	ν C=N, δ CH _{im} , δ NH
125	2756	166	ν NH
126	2830	188	ν NH
127	2912	2	ν CH ₂
128	2913	15	ν CH ₂

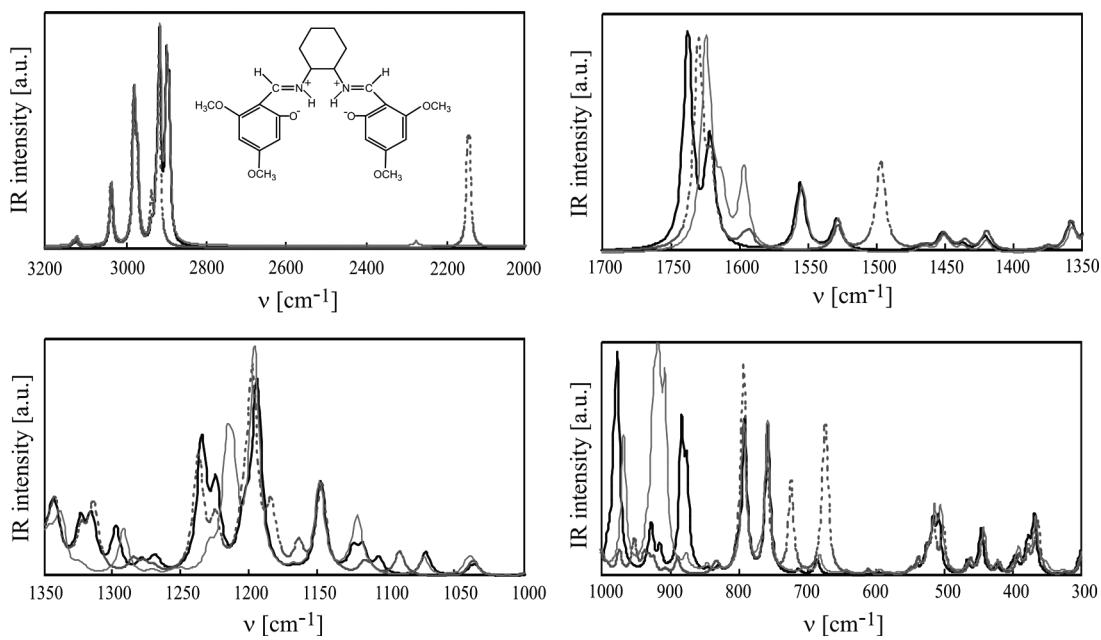
(Continued)


TABLE 2 Continued

Mode	ν (cm ⁻¹)	A (km/mol)	Assignment
129	2916	10	ν CH ₂
130	2921	6	ν CH ₂
131	2923	22	ν CH ₂
132	2934	41	ν CH ₂
133	2972	45	ν CH ₂
134	2974	31	ν CH ₂
135	2977	14	ν CH ₂
136	2980	34	ν CH ₂
137	3035	1	ν CH _{im}
138	3041	0	ν CH _{im}
139	3091	2	ν CH _{ar}
140	3093	1	ν CH _{ar}
141	3094	2	ν CH _{ar}
142	3094	1	ν CH _{ar}
143	3112	2	ν CH _{ar}
144	3114	2	ν CH _{ar}

ν CC_{ar} aromatic ring stretching.
 ν CC_{al} aliphatic ring stretching.
 ν CC_{im} stretching of the C2-C7 (A) and C16C17 (B) bonds.
 ν C=N stretching C7N8 (A) and C16N15 bonds.
 ν NC stretching C9N8 and C10N15 bonds.
 ν CO stretching C1O24 and C22O23 bonds.
 ν CH_{ar} stretching of the aromatic CH bonds.
 ν CH₂ stretching of the aliphatic CH bonds.
 ν imCH stretching of the C7H44 (A) and C16H4 3 (B) bonds.
 ν NH stretching of the N8H46 (A) and N15N37 (B) bonds.
 δ CH_{ar} in-plane bending of aromatic CH bonds (A,B).
 γ CH_{ar} out-of-plane bending of aromatic CH bonds (A,B).
 δ alCH₂ deformation of The CH₂ bonds of the cyclohexane ring.
 δ CH_{im} deformation in-plane of C7H44 (A) and C16H43 (B) bonds.
 γ CH_{im} deformation out-of-plane of C7H44 (A) and C16H43 bonds.
 δ ar ring deformation in-plane of the angles in the aromatic ring.
 τ ar ring deformation out-of-plane of the aromatic ring.
 δ al ring deformation in-plane of the angles in the cyclohexane ring.
 α CC=N in-plane bending of the C2C7N8 and C17C16N15.
 α C=NC in-plane bending of C9N8C7 and C10N15C16 bonds.
 τ C=N torsional angles C9N8C7C2 and C10N15C16C17.


with the strength of the hydrogen bond expressed by the N \cdots O distance according to the well-known relation^[13] although the theoretical ν NH frequency is higher than the experimental one. The scaling factor of 0.978 common for all frequencies in the IR spectrum correctly reproduces the fingerprint region but


FIGURE 2 Calculated IR spectra of NH tautomer of *trans*-N,N'-bis-(salicylidene)-1',2'-cyclohexanediamine R = H (I) (solid line) and its analogues where H in the OH group is replaced by D (dotted line) and H in the CH imine group is replaced by D (thin line).

the frequencies above 3000 cm⁻¹ are too high. After deuteration, these bands shift by a factor of 1.35 to 2072 and 2027 cm⁻¹, which indicates pure NH vibrations. The stretching frequency of the CH imine group (ν CH_{im}) gives rise to hardly visible bands at 3030 and 3023 cm⁻¹, which after deuteration give one broad band at 2230 cm⁻¹. The very intensive

band at 1635 cm⁻¹ and a medium-intensive band at 1623 cm⁻¹ sensitive to the deuteration of the CH_{im} and NH group are assigned to mixed ν C=N, δ NH, δ CH_{im}, and ν CO vibrations. The vibrations at 1619 and 1617 cm⁻¹ assigned to the δ NH, δ CH_{im}, and ν C=C modes are observed as a shoulder. The δ NH vibration is strongly coupled with the ν C=N

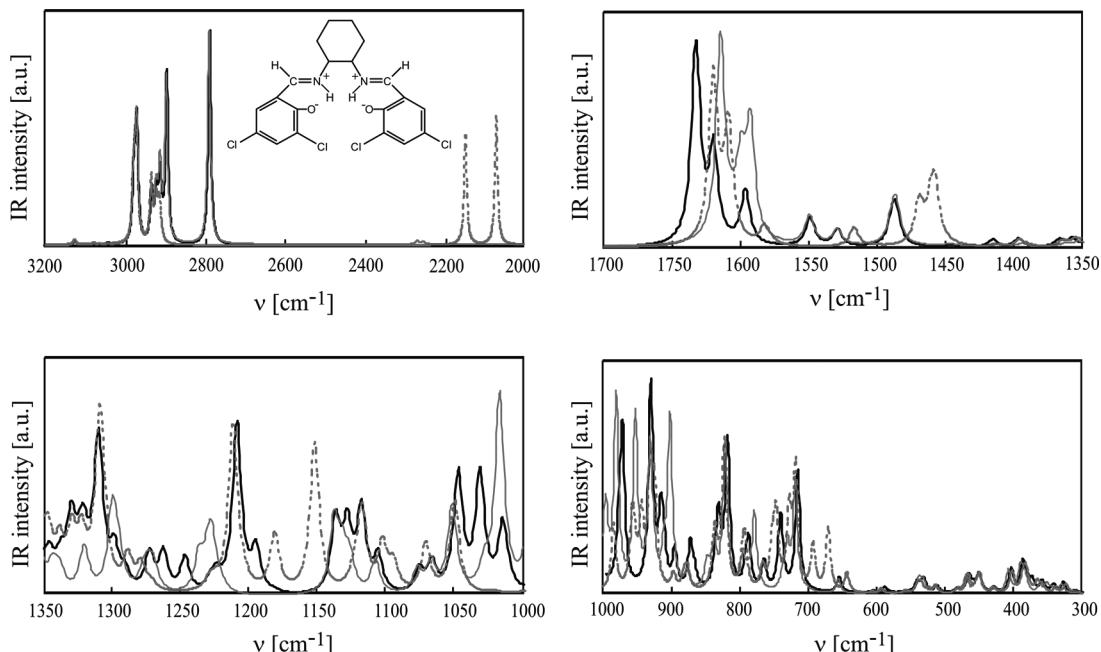

FIGURE 3 Calculated IR spectra of NH tautomer of *trans*-N,N'-bis-(5-nitrosalicylidene)-1',2'-cyclohexanediamine R = 5-NO₂ (II) (solid line) and its analogues where H in the OH group is replaced by D (dotted line) and H in the CH imine group is replaced by D (thin line).

FIGURE 4 Calculated IR spectra of NH tautomer of *trans*-N,N'-bis-(4,6-dimethoxysalicylidene)-1',2'-cyclohexanediamine R = 4,6-OCH₃ (III) (solid line) and its analogues where H in the OH group is replaced by D (dotted line) and H in the CH imine group is replaced by D (thin line).

vibration and with the ν C=C_{ar} stretching and δ CH_{ar} deformation aromatic ring bands. Two weak absorption bands at 1544 and 1536 cm⁻¹ are ascribed to the ν C=C stretching coupled with ν C=O and with the δ NH vibrations. Comparison of the 1350–1000 cm⁻¹ region of the IR spectra of I with its ND and CD imine

analogues shows coupling of the NH and δ CH imine vibration with the δ CH cyclohexyl and δ CH aromatic vibrations. The inequality of both the imine moieties additionally complicates the spectrum. The γ NH vibration absorbs at 981 and 975 cm⁻¹, coupled with the γ CH_{im}. The γ NH and γ CH_{im} vibrations also

FIGURE 5 Calculated IR spectra of NH tautomer of *trans*-N,N'-bis-(3,5-dichlorosalicylidene)-1',2'-cyclohexanediamine R = 3,5-Cl (IV) (solid line) and its analogues where H in the OH group is replaced by D (dotted line) and H in the CH imine group is replaced by D (thin line).

contribute to numerous very weak bands in the 1000–300 cm^{−1} region. A detailed assignment of the bands is in^[10] Table 2.

Trans-N,N'-bis-(5-Nitrosalicylidene)-cyclohexanediamine (II)

The ν NH vibration absorbs at 2830 and 2756 cm^{−1}, indicating the presence of the two different hydrogen bonds that are weaker than those in I (Fig. 3, Table 2). These bands shift after NH deuteration to 2094 and 2043 cm^{−1}. The change by a factor of 1.35 is almost exactly what would be expected for the pure NH mode. The ν CH_{im} vibration gives rise to very weak bands at 3041 and 3035 cm^{−1}. The very strong imine band at 1640 and the weaker one at 1627 cm^{−1} are assigned to the ν C=N vibration coupled with the δ NH and δ CH_{im} vibrations. The δ NH and δ CH_{im} mixed with the ν C=O and ν C=C gives rise to a band at 1620 cm^{−1}. The δ NH vibration also contributes to the band at 1574 cm^{−1} attributed to the ν_{as} NO₂ vibration. The mixed ν CO, ν C=C, and δ NH vibrations give rise to a very weak absorption at 1550 cm^{−1}. The δ NH vibration coupled with the aromatic stretching vibration absorbs at 1508 cm^{−1}, while those coupled with the δ CH_{im} and δ CH_{ar} vibrations absorb at 1388 and 1381 cm^{−1}. The 1350 to 1000 cm^{−1} region is dominated by a strong asymmetric band with a maximum at about 1330 cm^{−1}. The BLYP calculations give nine normal modes in the 1345–1320 cm^{−1} region. The mode of frequencies at 1344 cm^{−1} and 1340 cm^{−1} involves the ν CO, δ NH, δ CH_{im}, and δ CH_{ar} vibrations. The symmetric ν NO₂ vibrations predominate in the mode at 1333 cm^{−1} of the great intensity, which also involves δ CH_{ar} and δ CH₂. Comparison of the spectra of II and its deuterated analogues indicates that the δ NH and δ CH_{im} vibrations contribute to all the bands in the 1300–1100 cm^{−1} region. The γ NH vibration coupled to the γ CH_{im} vibration gives rise to medium-intensity bands at 990 and 985 cm^{−1}. These vibrations also contribute to the modes at 932 and 925 cm^{−1}.

Trans-N,N'-bis-(4,6-Dimethoxysalicylidene)-cyclohexanediamine (III)

The ν NH vibration absorbs at 2892 and 2885 cm^{−1}, indicating two NH···O hydrogen bonds of almost equal strength (Fig. 4, Table 3). The higher frequencies,

TABLE 3 Calculated Frequencies (cm^{−1}) and Intensities (km/mol) for *trans*-N,N'-bis-(4,6-Dimethoxy-Salicylidene)-1',2'-Cyclohexanediamine

Mode	ν (cm ^{−1})	A (km/mol)	Assignment
34	365	24	τ C=N, γ CO(CH ₃)
35	374	12	τ C=N
36	379	3	α C=NC, α CC=N, γ CH _{im} , γ NH
37	381	0	α C=NC, α CC=N, γ CH _{im} , γ NH
38	393	7	α CC=N, γ CH _{im} , γ CO(CH ₃)
39	399	2	δ _{al} ring, α CC=N
40	420	5	δ _{al} ring, α CC=N
41	442	2	δ _{al} ring, α CC=N
42	443	18	τ C=N, δ _{al} ring τ C=N, δ _{al} ring, δ CO(CH ₃), δ _{al} ring, δ _{ar} ring
43	449	1	δ _{al} ring
44	463	6	τ C=N
45	505	22	δ _{ar} ring, δ CO(CH ₃), δ CO
46	510	1	δ CO(CH ₃), δ CO
47	513	19	δ CO(CH ₃), δ CO
48	523	9	δ _{ar} ring
49	538	4	δ _{ar} ring, γ CH _{im} , δ CO(CH ₃)
50	548	2	γ CH _{im} , δ _{ar} ring
51	585	0	α C=NC, δ _{ar} ring
52	593	1	α C=NC, δ _{ar} ring
53	609	0	τ _{ar} ring
54	610	0	τ _{ar} ring
55	640	1	τ _{ar} ring
56	640	1	τ _{ar} ring
57	682	3	δ CH _{ar}
58	684	4	δ CH _{ar}
59	710	1	τ _{ar} ring, γ CO
60	711	1	τ _{ar} ring, γ CO
61	755	53	γ CH _{ar}
62	756	7	δ CH _{ar} , γ CH _{ar}
63	757	4	δ CH ₂ , α C=NC
64	789	34	τ _{ar} ring, γ CH _{ar} , γ CO
65	789	32	τ _{ar} ring, γ CH _{ar} , γ CO
66	797	3	δ CH ₂
67	801	7	δ CH ₂
68	828	3	δ CH ₂
69	843	1	δ CH ₂
70	874	39	γ NH, γ CH _{im}
71	881	59	γ NH, γ CH _{im}
72	884	0	γ NH, γ CH _{im}
73	913	10	δ CH ₂ , γ NH, δ CH _{ar}
74	925	8	δ CH ₂ , γ NH, δ CH _{ar}
75	926	10	δ CH ₂ , γ NH, δ CH _{ar}
76	931	3	δ CH ₂ , γ NH, δ CH _{ar}
77	975	80	γ NH, δ CH _{ar} , δ CH ₃ , γ CH _{im}
78	980	32	γ NH, δ CH _{ar} , δ CH ₂ , γ CH _{im}
79	988	4	γ CH ₂ , δ CH ₃
80	990	5	γ CH ₂ , δ CH ₃
81	1009	0	δ CH ₂

(Continued)

TABLE 3 Continued

Mode	ν (cm ⁻¹)	A (km/mol)	Assignment
82	1016	0	δCH_2
83	1022	0	δCH_2
84	1033	20	δCH_2 , δCH_3 , $\delta\text{CH}_{\text{ar}}$
85	1037	18	δCH_2 , δCH_3 , $\delta\text{CH}_{\text{ar}}$
86	1054	2	$\delta\text{CH}_{\text{ar}}$
87	1070	63	δNH , $\delta\text{CH}_{\text{ar}}$, δCH_2 , $\nu\text{N-C}$, $\nu\text{CO}(\text{CH}_3)$
88	1104	11	δNH , $\delta\text{CH}_{\text{im}}$, $\delta\text{CH}_{\text{ar}}$, $\delta\text{CH}_{\text{ar}}$
89	1104	30	δNH , $\delta\text{CH}_{\text{im}}$, $\delta\text{CH}_{\text{ar}}$, $\delta\text{CH}_{\text{ar}}$
90	1116	62	δCH_3 , δCH_2 , δNH
91	1123	60	δCH_3 , δNH
92	1132	1	δCH_3 , δCOCH_3
93	1132	1	δCH_3 , δCOCH_3
94	1133	1	δCH_3 , δCOCH_3
95	1133	1	δCH_3 , δCOCH_3
96	1146	140	νCO , (CH ₃)
97	1148	112	νCO , (CH ₃)
98	1165	5	δCH_2 , $\delta\text{CH}_{\text{ar}}$
99	1167	4	δCH_2 , $\delta\text{CH}_{\text{ar}}$
100	1183	0	δCH_2 , $\delta\text{CH}_{\text{ar}}$
101	1193	202	νCO
102	1194	292	νCO
103	1201	84	$\delta\text{CH}_{\text{ar}}$, $\delta\text{CH}_{\text{im}}$
104	1205	57	$\delta\text{CH}_{\text{ar}}$, $\delta\text{CH}_{\text{im}}$
105	1223	117	δCH_2 , $\delta\text{CH}_{\text{im}}$, $\delta\text{CH}_{\text{ar}}$, δNH
106	1224	88	δCH_2 , $\delta\text{CH}_{\text{im}}$, $\delta\text{CH}_{\text{ar}}$, δNH
107	1232	98	δCH_2 , $\delta\text{CH}_{\text{im}}$
108	1234	253	νNC δCH_2 , $\delta\text{CH}_{\text{ar}}$
109	1267	26	δCH_2 , $\delta\text{CH}_{\text{im}}$
110	1270	20	δNH $\delta\text{CH}_{\text{im}}$, δCH_2
111	1278	29	δNH $\delta\text{CH}_{\text{im}}$, δCH_2
112	1296	80	δNH $\delta\text{CH}_{\text{im}}$, δCH_2
113	1297	34	δNH $\delta\text{CH}_{\text{im}}$, δCH_2
114	1313	75	$\delta\text{CH}_{\text{im}}$, δCH_2
115	1316	68	$\delta\text{CH}_{\text{im}}$, δCH_2
116	1322	114	$\delta\text{CH}_{\text{im}}$, δNH
117	1330	14	$\delta\text{CH}_{\text{im}}$, δNH
118	1338	37	$\delta\text{CH}_{\text{im}}$, δCH_2 $\delta\text{CH}_{\text{ar}}$
119	1341	105	$\delta\text{CH}_{\text{im}}$, δCH_2 $\delta\text{CH}_{\text{ar}}$
120	1344	57	$\delta\text{CH}_{\text{im}}$, δCH_2 $\delta\text{CH}_{\text{ar}}$
121	1347	19	$\delta\text{CH}_{\text{im}}$, δCH_2 , $\delta\text{CH}_{\text{ar}}$
122	1356	232	δCH_2 , $\delta\text{CH}_{\text{ar}}$, $\delta\text{CH}_{\text{im}}$
123	1377	11	$\delta\text{CH}_{\text{im}}$, δNH , δCH_2
124	1380	1	δCH_2 , $\delta\text{CH}_{\text{im}}$
125	1418	66	δCH_3 , $\delta\text{CH}_{\text{im}}$
126	1418	62	δCH_3 , $\delta\text{CH}_{\text{im}}$
127	1434	22	δCH_3 , δNH
128	1435	26	δCH_3 , δNH
129	1441	1	δCH_3
130	1443	2	δCH_3
131	1443	8	δCH_2
132	1444	2	δCH_2

(Continued)

TABLE 3 Continued

Mode	ν (cm ⁻¹)	A (km/mol)	Assignment
133	1444	6	δCH_3
134	1444	8	δCH_3
135	1447	22	δCH_2
136	1449	43	δCH_3
137	1450	82	δCH_3
138	1460	3	δCH_2
139	1460	12	δCH_3
140	1461	17	δCH_3
141	1465	12	δCH_3
142	1466	11	δCH_3
143	1524	20	δCH_3 , $\delta\text{CH}_{\text{ar}}$
144	1526	224	νCC_{ar} , νCO
145	1549	20	δNH , $\delta\text{CH}_{\text{im}}$, νCO
146	1552	557	δNH , $\delta\text{CH}_{\text{im}}$, νCO
147	1615	46	νCC_{ar} , δNH , $\delta\text{CH}_{\text{im}}$
148	1617	161	νCC_{ar} , δNH , $\delta\text{CH}_{\text{im}}$
149	1619	743	νCC_{ar} , δNH
150	1634	1799	$\nu\text{C=N}$, $\delta\text{CH}_{\text{im}}$, δNH
151	2885	162	νNH
152	2892	195	νNH
153	2908	50	νCH_3
154	2908	25	νCH_3
155	2909	86	νCH_3
156	2909	20	νCH_2
157	2909	50	νCH_2
158	2910	28	νCH_2
159	2914	4	νCH_2
160	2917	45	νCH_2
161	2918	5	νCH_2
162	2929	19	νCH_2
163	2963	61	νCH_3
164	2965	45	νCH_3
165	2971	29	νCH_3
166	2971	51	νCH_3
167	2971	13	νCH_3
168	2972	39	νCH_2
169	2972	6	νCH_2
170	2974	58	νCH_2
171	3028	27	νCH_3
172	3028	30	νCH_3
173	3031	16	νCH_3
174	3031	17	νCH_3
175	3070	0	νCH_{im}
176	3071	0	νCH_{im}
177	3115	6	νCH_{ar}
178	3116	6	νCH_{ar}
179	3126	2	νCH_{ar}
180	3126	2	νCH_{ar}

in comparison with those previously discussed, indicate a weaker hydrogen bond. The νCH_{im} mode gives a very weak absorption band at the highest wave

numbers in the studied series of Schiff bases. In the imine band region, only two bands are observed. The very strong absorption band at 1634 cm^{-1} was assigned to the $\nu\text{C}=\text{N}$ vibration coupled with the δNH and $\delta\text{CH}_{\text{im}}$. In the strong band at 1619 cm^{-1} , three modes are engaged: one at 1619 cm^{-1} assigned to δNH and $\nu\text{C}=\text{C}$ and at 1617 cm^{-1} and 1615 cm^{-1} assigned to the δNH , $\nu\text{C}=\text{C}$, and $\delta\text{CH}_{\text{im}}$ vibrations. The band at 1552 cm^{-1} is assigned to $\nu\text{C}=\text{C}$, δNH , and νCO . The νCO vibration also participates in the $\nu\text{C}=\text{C}_{\text{ar}}$ band at 1526 cm^{-1} . The low-intensity bands in the $1466\text{--}1380\text{ cm}^{-1}$ region originate from the deformation vibrations of the CH_3 and CH_2 groups. The $\delta\text{CH}_{\text{im}}$ vibration predominates in the band at 1322 cm^{-1} and participates in the numerous medium and weak bands in the region between 1377 and 1220 cm^{-1} . The medium-intensity band at 1148 cm^{-1} is attributed mainly to δCH_3 and $\delta\text{CH}_{\text{ar}}$ and $\nu\text{CO}(\text{CH}_3)$ groups. The γNH vibration participates in the numerous bands in the $975\text{--}874\text{ cm}^{-1}$ region.

Trans-*N,N'-bis-(3,5-Dichlorosalicylidene)-cyclohexanediamine (IV)*

The nonequivalence of the salicylidene moieties is greater than in the other compounds of the series. The νNH stretching vibration of 2896 cm^{-1} corresponds with the longer hydrogen bond (2.5619 \AA) and that of 2788 cm^{-1} to the shorter one (2.5293 \AA) (Table 4). The first νNH stretching vibration also contributes to the weak bands at 2913 and 2911 cm^{-1} assigned to νCH_2 of the cyclohexyl ring. The very weak absorption bands at 3065 and 3044 cm^{-1} are assigned to the stretching vibrations of the imine groups. The $\nu\text{C}=\text{N}$ vibrations coupled with δNH and $\delta\text{CH}_{\text{im}}$ give rise to the very strong bands at 1635 cm^{-1} and the weaker one at 1622 cm^{-1} . The mixed δNH , νCO , and $\nu\text{C}=\text{C}_{\text{ar}}$ vibrations absorb at 1599 cm^{-1} . These vibrations also give rise to the bands at 1551 and 1531 cm^{-1} . $\nu\text{C}=\text{C}$ coupled with δNH absorbs at 1491 and 1488 cm^{-1} . The weak bands in the $1417\text{--}1348\text{ cm}^{-1}$ region are assigned to the $\delta\text{CH}_{\text{im}}$ vibrations mixed with those of $\delta\text{CH}_{\text{ar}}$, δCH_2 , and δNH . Comparison of the $1350\text{--}1000\text{ cm}^{-1}$ region of the spectra of the nondeuterated and the NH and CH deuterated compounds (Fig. 5) shows the extensive coupling of the $\delta\text{CH}_{\text{im}}$ vibration with the deformation vibrations of the aromatic and aliphatic CH

TABLE 4 Calculated Frequencies (cm^{-1}) and Intensities (km/mol) for *trans-N,N'-bis-(3,5-Dichlorosalicylidene)-1',2'-cyclohexanediamine*

Mode	ν (cm^{-1})	A (km/mol)	Assignment
26	358	2	$\tau\text{C}=\text{N}$, $\alpha\text{CC}=\text{N}$
27	360	3	τ_{ar} ring, $\gamma\text{CH}_{\text{im}}$, γNH
28	374	6	$\alpha\text{CC}=\text{N}$, γNH
29	381	4	$\alpha\text{C}=\text{NC}$, $\alpha\text{CC}=\text{N}$
30	386	6	δ_{ar} ring, $\alpha\text{CC}=\text{N}$, δ_{al} ring
31	388	10	δ_{al} ring, $\tau\text{C}=\text{N}$
32	405	12	δ_{ar} ring, δ_{al} ring
33	430	2	δ_{al} ring
34	452	9	δ_{al} ring, $\gamma\text{CH}_{\text{im}}$, δCO
35	460	3	$\tau\text{C}=\text{N}$
36	467	9	δ_{al} ring,
37	483	2	τ_{ar} ring, $\gamma\text{CH}_{\text{ar}}$, $\gamma\text{CH}_{\text{im}}$, γNH
38	514	3	τ_{ar} ring, $\gamma\text{CH}_{\text{ar}}$, $\gamma\text{CH}_{\text{im}}$, γNH
39	533	4	δ_{ar} ring, $\delta\text{CH}_{\text{im}}$, δ_{al} ring
40	534	3	δ_{ar} ring, $\delta\text{CH}_{\text{im}}$, δ_{al} ring
41	539	1	δ_{ar} ring
42	544	5	δ_{al} ring, $\delta\text{CH}_{\text{im}}$, δ_{ar} ring, γNH
43	561	1	δ_{al} ring, $\delta\text{CH}_{\text{im}}$, δ_{ar} ring
44	591	3	τ_{ar} ring, $\gamma\text{CH}_{\text{ar}}$
45	608	1	δ_{ar} ring, γNH , $\gamma\text{CH}_{\text{im}}$
46	658	8	δ_{ar} ring, γNH , $\gamma\text{CH}_{\text{im}}$
47	709	1	τ_{ar} ring, γCO , $\gamma\text{CH}_{\text{im}}$, $\gamma\text{CH}_{\text{ar}}$
48	719	63	δ_{ar} ring, $\delta\text{CH}_{\text{im}}$
49	743	16	τ_{ar} ring, γCO , $\gamma\text{CH}_{\text{im}}$
50	745	25	τ_{ar} ring, γCO , $\gamma\text{CH}_{\text{im}}$
51	769	15	δCH_2
52	791	24	$\gamma\text{CH}_{\text{ar}}$, $\gamma\text{CH}_{\text{im}}$
53	796	9	δ_{ar} ring, $\delta\text{CH}_{\text{im}}$
54	822	75	δ_{ar} ring, $\delta\text{CH}_{\text{im}}$
55	825	3	δCH_2
56	835	26	$\gamma\text{CH}_{\text{ar}}$, $\gamma\text{CH}_{\text{im}}$, δNH
57	837	13	$\gamma\text{CH}_{\text{ar}}$, $\gamma\text{CH}_{\text{im}}$, δNH
58	842	8	δCH_2 , γNH
59	871	8	γNH , $\gamma\text{CH}_{\text{im}}$, $\gamma\text{CH}_{\text{ar}}$
60	877	23	γNH , $\gamma\text{CH}_{\text{im}}$, $\gamma\text{CH}_{\text{ar}}$
61	879	0	δCH_2
62	900	19	γNH , $\gamma\text{CH}_{\text{im}}$
63	917	20	$\gamma\text{CH}_{\text{im}}$, γNH , δCH_2
64	921	33	$\gamma\text{CH}_{\text{im}}$, γNH , δCH_2
65	935	101	γNH , $\gamma\text{CH}_{\text{im}}$, δCH_2
66	937	6	δCH_2 , $\delta\text{CH}_{\text{im}}$, νCC_{im}
67	977	79	$\gamma\text{CH}_{\text{im}}$, γNH
68	983	23	$\gamma\text{CH}_{\text{im}}$, γNH
69	1012	6	δCH_2
70	1016	45	δCH_2 , γNH , $\gamma\text{CH}_{\text{im}}$
71	1033	82	$\delta\text{CH}_{\text{im}}$, γNH , $\gamma\text{CH}_{\text{ar}}$, δCH_2
72	1049	80	$\gamma\text{CH}_{\text{ar}}$, δCH_2 , $\delta\text{CH}_{\text{im}}$, γNH
73	1053	5	δCH_2
74	1068	20	$\delta\text{CH}_{\text{ar}}$, δNH
75	1077	16	$\delta\text{CH}_{\text{ar}}$, δNH

(Continued)

TABLE 4 Continued

Mode	ν (cm ⁻¹)	A (km/mol)	Assignment
76	1107	25	δCH_2 , $\delta\text{CH}_{\text{ar}}$
77	1120	57	$\delta\text{CH}_{\text{im}}$, δCH_2 , $\delta\text{CH}_{\text{ar}}$
78	1130	43	$\delta\text{CH}_{\text{ar}}$, δNH , $\delta\text{CH}_{\text{im}}$
79	1138	49	$\delta\text{CH}_{\text{ar}}$, δNH
80	1183	1	δCH_2
81	1197	30	$\delta\text{CH}_{\text{im}}$, $\delta\text{CH}_{\text{ar}}$
82	1211	117	$\delta\text{CH}_{\text{im}}$, $\delta\text{CH}_{\text{ar}}$, δNH , δCH_2
83	1225	11	δCH_2 , $\delta\text{CH}_{\text{im}}$
84	1230	7	δCH_2 , $\delta\text{CH}_{\text{im}}$
85	1249	24	$\delta\text{CH}_{\text{im}}$, δNH , δCH_2 , $\delta\text{CH}_{\text{ar}}$
86	1265	27	$\delta\text{CH}_{\text{im}}$, δNH , δCH_2 , $\delta\text{CH}_{\text{ar}}$
87	1275	26	δNH , $\delta\text{CH}_{\text{ar}}$, δCH_2
88	1286	0	δCH_2 , $\delta\text{CH}_{\text{im}}$, $\delta\text{CH}_{\text{ar}}$
89	1293	12	δCH_2 , $\delta\text{CH}_{\text{im}}$, $\delta\text{CH}_{\text{ar}}$
90	1300	26	δCH_2 , δNH
91	1312	105	$\delta\text{CH}_{\text{im}}$, δCH_2
92	1318	2	$\delta\text{CH}_{\text{im}}$, δCH_2
93	1323	33	$\delta\text{CH}_{\text{im}}$, δCH_2
94	1326	12	$\delta\text{CH}_{\text{ar}}$, δNH , $\delta\text{CH}_{\text{im}}$, νCO
95	1332	45	δCH_2 , $\delta\text{CH}_{\text{im}}$
96	1339	17	δCH_2 , $\delta\text{CH}_{\text{im}}$
97	1344	4	δCH_2
98	1348	20	δCH_2 , $\delta\text{CH}_{\text{im}}$
99	1359	47	$\delta\text{CH}_{\text{im}}$, $\delta\text{CH}_{\text{ar}}$, δNH
100	1368	44	$\delta\text{CH}_{\text{im}}$, $\delta\text{CH}_{\text{ar}}$, δNH
101	1398	50	$\delta\text{CH}_{\text{ar}}$, δNH , $\delta\text{CH}_{\text{im}}$
102	1417	46	$\delta\text{CH}_{\text{ar}}$, δNH , $\delta\text{CH}_{\text{im}}$
103	1442	0	δCH_2
104	1444	3	δCH_2
105	1448	9	δCH_2
106	1460	2	δCH_2
107	1488	223	νCC_{ar} , δNH
108	1491	90	νCC_{ar} , δNH
109	1531	104	νCC_{ar} , δNH
110	1551	173	νCC_{ar} , δNH
111	1599	319	νCC_{ar} , δNH
112	1605	4	$\nu\text{C}=\text{N}$, νCO , δNH , νCC_{ar} , $\delta\text{CH}_{\text{im}}$
113	1622	559	$\nu\text{C}=\text{N}$, νCO , δNH , $\nu\text{C}=\text{C}$, $\delta\text{CH}_{\text{im}}$
114	1635	1195	$\nu\text{C}=\text{N}$, δNH , $\delta\text{CH}_{\text{im}}$, νCO
115	2788	147	νNH
116	2896	116	νNH
117	2911	21	νNH , νCH_2
118	2913	19	νNH , νCH_2
119	2915	8	νCH_2
120	2920	5	νCH_2
121	2922	28	νCH_2
122	2934	34	νCH_2
123	2970	48	νCH_2
124	2972	34	νCH_2
125	2975	14	νCH_2

*(Continued)***TABLE 4** Continued

Mode	ν (cm ⁻¹)	A (km/mol)	Assignment
126	2979	36	νCH_2
127	3044	1	νCH_2
128	3065	0	νCH_{im}
129	3079	1	νCH_{im}
130	3099	0	νCH_{ar}
131	3114	0	νCH_{ar}
132	3127	3	νCH_{ar}

groups. δNH also participates in numerous bands in this region. γNH coupled with γCH and δCH_2 give rise to several bands in the 983–720 cm⁻¹ range. These vibrations also contribute to very weak absorption bands in the 700–300 cm⁻¹ region.

DISCUSSION

Analysis of the geometric parameters (Table 1) of *trans*-*N,N'*-bis(R-salicylidene)-cyclohexanediamine I–IV permits drawing conclusion concerning the influence of the aromatic ring substituent on the hydrogen bond strength. The N···O distances of 2.53–2.55 Å indicate the presence of a medium-strength hydrogen bond. The partially ionic character of the $\text{NH}^+ \cdots \text{O}^-$ hydrogen bond can be suggested on the basis of the C–O distances.^[14] For I, an about 50% zwitterionic structure (Scheme 1) has been proposed.^[9] The differences in bond length between the two salicylidene moieties are observed in all the compounds but III. In the series of OH tautomers, differentiation of the two moieties was observed only in IV. Comparison of the calculated N···O distances for the respective NH and OH tautomers^[6] shows that proton transfer leads to a shortening of the hydrogen bond N···O bridge and increases the nonequivalence of the moieties. In IV, the N···O distances in the two moieties differ considerably. One of the N···O distance is the longest one, and the other is the shortest in the series of NH tautomers studied. This difference in N···O length in the two moieties of these compounds cannot be explained, as for the OH tautomers, by mesomeric and steric effects only. In these di-Schiff bases, the inductive and field effects of the $\text{C}=\text{NH}^+$ groups have to be taken into account. The NMR results indicated interrelations between the two hydrogen bonds in the Schiff base derivatives of 1,2-diaminocyclohexane.^[6,8,15] Comparison of the distances in I

and II shows that introduction of the NO_2 group to the salicylidene ring causes elongation of the $\text{N}\cdots\text{O}$ bridge and differentiation of the $\text{N}\cdots\text{O}$ bond in the two salicylidene moieties. The NO_2 group in *para* position to phenolic oxygen causes a decrease in its proton acceptor properties, which causes a decrease in the hydrogen bond strength. The unfavorable electrostatic interactions between the two NH^+ groups additionally influences the $\text{N}\cdots\text{O}$ distances in the two moieties. The presence of two electron-donor OCH_3 groups in III leads to an increase in the charge density on the N atoms, which explains the relatively long $\text{N}\cdots\text{O}$ distance similar in both salicylidene moieties.

The calculated νNH frequencies in the range $2913\text{--}2730\text{ cm}^{-1}$ are in agreement with the $\text{N}\cdots\text{O}$ bond length and confirm the presence of the moderately strong hydrogen bonds. It should be noted that the calculated νNH frequencies are generally higher than the experimental values due to neglecting the intermolecular interactions and the anharmonicity of these vibrations. The νNH frequency indicates that the $\text{NH}^+\cdots\text{O}^-$ hydrogen bonds are stronger than the $\text{OH}\cdots\text{N}$ ones.^[9] Comparison of the νNH frequencies of the investigated compounds shows, similarly as their distances, that the introduction of the electron donor and electron withdrawing substituents leads to weakening of the hydrogen bond. The stretching vibration of the NH groups for all the compounds but III gives rise to double bands, in accordance with the two different $\text{N}\cdots\text{O}$ distances in the molecules (Figs. 2–5).

The stretching vibration of the imine CH group νCH_{im} gives rise to weak absorption bands in the $3126\text{--}3023\text{ cm}^{-1}$ region whose frequencies decrease in inverse range in comparison with the νNH .

Comparison of the $1700\text{--}300\text{ cm}^{-1}$ region shows that other vibrations of the NH form of *trans*- N,N' -bis-(R-salicylidene)-cyclohexanediamine are sensitive to the substituents on the aromatic ring.

The most characteristic vibrations of the Schiff bases are those of the $\text{C}=\text{N}$ imine group, strongly coupled with the other vibration that influence several bands in the region of $1640\text{--}1605\text{ cm}^{-1}$. The appearance of the band at $1640\text{--}1635\text{ cm}^{-1}$ sensitive to NH and CH deuteration confirms a contribution from the resonance zwitterionic structure of tautomeric NH form. The origin of the absorption in the $1650\text{--}1630\text{ cm}^{-1}$ region of the IR spectra of the NH

tautomers of Schiff bases has been the subject of discussion.^[15–17] Assignment to νCO and $\nu\text{C}=\text{NH}^+$ vibrations has been proposed. Unequivocal assignment of the νCO vibration is difficult due to the complicated nature of the normal modes and overlapping of the bands. For OH tautomers, the νCO vibration participates in the bands in the $1290\text{--}1215\text{ cm}^{-1}$ region.^[9,10] For the NH form of the Schiff bases under study, this vibration is substituent sensitive and participates in the bands in the $1635\text{--}1552\text{ cm}^{-1}$ region. For all compounds, absorption bands at $1530\text{--}1550\text{ cm}^{-1}$ are observed. This mode is assigned to coupled δNH and $\nu\text{C}=\text{C}$ vibrations, and for I and III also to νCO ones. This band was recognized to be very characteristic for NH tautomers and Schiff base complexes.^[15,17–19] Yuzawa^[15] assigned it to the vibration of the $\text{O}=\text{C}=\text{C}=\text{C}=\text{N}^+\leftrightarrow\text{O}=\text{C}=\text{C}=\text{N}$ group. The deformation vibrations of the imine group are difficult to assign due to a strong coupling with the other vibration. The $1350\text{--}1100\text{ cm}^{-1}$ region is characteristic for each compound of the series due to the presence of the absorption bands of the substituents (NO_2 , OCH_3) and the differences in the coupling of the vibrations. γNH coupled with $\gamma\text{CH}_{\text{im}}$ is associated with the bands in the $980\text{--}930\text{ cm}^{-1}$ region. The very weak absorption bands in the region below 700 cm^{-1} are related mainly to the deformation vibration of the aromatic and aliphatic rings and to skeletal deformations.

The vibrations of the cyclohexyl absorb at the characteristic regions, strongly mixed with the $\delta\text{CH}_{\text{im}}$, $\delta\text{CH}_{\text{ar}}$, and δNH vibrations. The deformation vibrations of the aromatic CH group are difficult to assign due to strong mixing with the other vibrations.

CONCLUSIONS

DFT analysis of the *trans*- N,N' -bis-(R-salicylidene)-1,2-cyclohexanediamines shows that proton transfer leads to differentiation of the $\text{N}\cdots\text{O}$ bridges in the salicylidene moieties, which depends on the substituent in the aromatic ring. Comparison of the IR spectra of compounds I–IV and their analogues deuterated in the NH and CH imine groups provides evidence of the complicated nature of the normal modes. Vibrational analysis of the NH tautomers of the *trans*- N,N' -bis-(R-salicylidene)-1,2-cyclohexanediamines (R = H, 5- NO_2 , 4,6-di- OCH_3 , 3,5-diCl)

permitted postulating some generalities concerning the IR spectra of these compounds as well as offering some possibilities of investigation of the substituent effect on $\text{NH}^+ \cdots \text{O}^-$ hydrogen bond strength. The theoretical analysis of the pure OH and NH forms of *trans*-*N,N'*-bis-(R-salicylidene)-1,2-cyclohexanediamines suggested in this paper can be useful in the interpretation of experimental IR spectra in which both these forms coexist.

ACKNOWLEDGMENT

We thank the Wrocław Center for Networking and Supercomputing and for generous computer time.

REFERENCES

1. Dziembowska, T. *Pol. J. Chem.* **1998**, *72*, 193–209.
2. Hadjoudis, E.; Mavridis, I. M. *Chem. Soc. Rev.* **2004**, *33*, 579–588.
3. Calligaris, M.; Randaccio, L. In *Comprehensive Coordination Chemistry*; Vol. 2, Wilkinson, G., Ed.; Pergamon Press: Oxford, 1987; 715–738.
4. Canali, L.; Sherrington, D. C. *Chem. Soc. Rev.* **1999**, *28*, 85–93.
5. Larow, J. F.; Jacobsen, E. N. In *Topics Organometallic Chemistry 6*; Larsen, R. D., Ed.; Springer-Verlag: Berlin, 2004; 123–152.
6. Ambroziak, K.; Rozwadowski, Z.; Dziembowska, T.; Bieg, B. *J. Mol. Struct.* **2002**, *615*, 109–120.
7. Ambroziak, K.; Pelech, R.; Milchert, E.; Dziembowska, T.; Rozwadowski, Z. *J. Mol. Catal. A* **2004**, *211*, 9–16.
8. Dziembowska, T.; Ambroziak, K.; Rozwadowski, Z.; Schilf, W.; Kamiński, B. *Magn. Reson. Chem.* **2003**, *41*, 135–138.
9. Majerz, I.; Dziembowska, T.; Ambroziak, K. *J. Mol. Struct.* **2007**, *828*, 166–173.
10. Dziembowska, T.; Ambroziak, K.; Majerz, I. *J. Mol. Struct.* **2005**, *738*, 15–24.
11. Rozwadowski, Z.; Ambroziak, K.; Dziembowska, T.; Kotfica, M. *J. Mol. Struct.* **2002**, *643*, 93–100.
12. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R. Gaussian 1998, Revision A.9. Gaussian, Inc.: Pittsburgh, PA, 1998.
13. Lautie, A.; Froment, F.; Novak, A. *Spectrosc. Lett.* **1976**, *9*, 289–299.
14. Filarowski, A.; Koll, A.; Głowiak, T.; Majewski, E.; Dziembowska, T. *Ber. Bunsenges. Phys. Chem.* **1998**, *102*, 393.
15. Yuzawa, T.; Takahashi, H.; Hamaguchi, H. *Chem. Phys. Lett.* **1993**, *202*, 221–226.
16. Turbeville, W.; Dutta, P. K. *J. Phys. Chem.* **1990**, *94*, 4060–4066.
17. Berkesi, O.; Körtvélyesi, T.; Hetényi, C.; Németh, T.; Pálánkó, I. *Phys. Chem. Chem. Phys.* **2003**, *5*, 2009–2014.
18. Percy, G. C.; Thronton, D. A. *J. Inorg. Nucl. Chem.* **1972**, *34*, 3357–3367.
19. Gluvchinsky, P.; Mockler, G. M.; Sinn, E. *Spectrochim. Acta* **1977**, *33A*, 1073–1077.